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Abstract

Most optimization problems in layout have been shown to be NP-complete, resulting in
researchers abandoning the search for optimum solutions even for small-scale problem

|| instances.

In this paper we transform various NP-complete problems in layout, namely two- and
multi-layer dogleg routing, two-way partitioning, one-dimensional and two-dimensional
placement, into Boolean satisfiability problems. The transformations are efficient in that
the number of inputs to the Boolean function, for which we have to find a satisfving
assignment, only grows linearly or quasi-linearly with the layout problem size. These
transformations also produce a minimal-sized Boolean function, in order to speed up
satisfiability check performance.

We apply sophisticated test generation and logic verification strategies that can be used to
check for Boolean function satisfiability to these layout problems. We present experi-
mental results which indicate that problems of significant size can be solved optimally using

this approach. This approach to optimal lavout is considerably more efficient than
c¢xhaustive search.

Further, we show that this approach to lavout optimization offers an elegant means of
representing and searching the entire space of feasible solutions in an attempt to optimize a
complex cost function with associated constraints.
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Optimal Layout Via Boolean Satisfiability

Srinivas Devadas

Department of Electrical Engiucering and Compnter Science
Massachusetts Institute of Technology, Cambridge

Abstract

Most optimization problems in layout have been shown to be NP-
complete. resulting i rescarchers abandoning the search for optimum
<olutions even for small-scale problens instauces.

It this paper. we transforim various NP-complete problerns in lavont.
nanely two and nalti-laver dogleg chanuel routing. two-way partition-
ing. one-ditmensional and two-dimensional placentent into Boolcan satis-
fiabdity problewss. The transformations are efficient in that the number
of input# to the Boolean function. for which we have to find a satisfying
assigniment. only grows linearly or quasi-linearly with the layout proi»
lem sime. These transformations also produce a minimal-sized Boolean
function. in order 1o speed up satisfiability check performance.

We apply sophisticated test generation and logic verification strate-
gies that can be used to check for Boolean function satisfiability to these
fasount problems. We present experimsental results which indicate that
problems of sigmificant sizc can be solved optrmally using this approach.
This approach to optimal layout is considerably more efficient than ex-
Liaustive search.

Further. we show that this approach to layout optintization offers an
elegant means of representing and searching the entire space of feasi-
ble solutions in an attempl to optimize a complex cost function with
associated constraints,

1 Introduction

The area of layout design and synthesis is rich in optimization problems.
Placenient problems involve finding locations for various modules so as
to wiiniiize a ghven objechive funetjon. which reflects the interconnect
complexity of the placed modules. Given a placement of wodules. the
problent of routing is to make the required connections in nuninwum
area.

Unfortunately, most placerment and routing problemis hase heen
shown 1o be NP-copplete. This has led researchers into abandoning
the search for optimam solutions even for stnall-scale problemn instances,
Other thau Asano’s optinmp one-dimensional placement algorithin 1]
and optimum bipartite PLA folding techniques (5], there has heen a
dearth of algonithims that guarantee global optiisality for lavout prob-
letns.

With computers becaming consistently and significantly faster at each
new generation, it s onr belief that NP-complete optimization problems,
ol a significant size, can he <ofved in an optimal way, with reasonable
CPUVrine expenditure. Tis belief stems from the fact that even though
the wotst-case performance of exact algorithius for NP-complete prob-
lems grows exponentially with problen size, in practice quite a few of
these prohlems have been shown to be amenabie (o an "intelligent™ exact
<olution method. e.g. branch and bouud techniques. even for large-scale
problens mstances. By an intelligent method. we mean a method that
primes the seateh space withont sacrificing optimality by exploiting the
nature of the problem and the strucrure of the problem iustanee. Trivial
exhiaustive searcl methods have a worst case and an empirical behavior
that 1s expouentially related 1o problem scale.

Real-life. large-scals instances of several NP-complete logic synthe-
i« problems. notahly ones of two-level Boolean minimization. Boolean
tautology and satisfiability. have heen solved using exact, albeit very
soplusticated algorithins. For details, the reader is referred to {3} [1] [R]
[10).

In this paper. we transform varions NP-coluplete problems in layout,
namely two cad lti-laser dogleg channet routing, two-way partition-
g, one-dimensional and two.dimensional placeiment into Boolean satis-
finlalety problenis. The transfonmations are efficient in that the unimber
of inputs to the Boulean function. for which we have to find a satisfying
assignmient. only grows lincarly or guacrdmearly ! with the layout prol-
lemn size. The tuinber of gates in the Boolean function, resulting from
this transformation. is also mimmal. These transformations allow us
to apply sophisticated test generation and logic verification strategies
that can be used to check for Boolean function satisfiability to layout

'We use the terin quasi-linear to signify a nlog{n) growth

problems. We liave oblained experimental results which indicate tha
routing and placement probleins of significant size can be solved opty.
mally using this approach. A triviai exhaustive search method is nat
feasible for anything hut very small problems. Thus, this approach to
optimal layout is considerably more efficient than exhaustive seaicli.
In Section 2, the algnrithims we vse for the Boolean saticfiability clieck
are briefly described. ‘[ransformations for routing and placement pnob.
lems to Boolean function satisfiability are described in Sections 3 and 1.
We describe implementation details and give prelitiinary expermwntal

results in Section 5.

2 Checking for Boolean Satisfiability

There are several ways that a Boolean function can he cheeked for sat
isfiability. It is not our purpose here to review the extensive literature
on the subject and hence we focus on two particular technigites that we
experimented with.

One method of checking two logic functions for equivalence [3) trans.
forms the given logic functions tto canatiical representations known as
Binary Decision Diagrams (BDDs). Because BDDs tepresent canonical
graphs of logic functions, checking logic functions lor equirsalence. grren
therr BDDs. becomes erely a graph isoinorphisin chieck. whicli can he
performed in time linear in the <ize of the BDD<. Also. a logic fune-
tion is satisfiable if and ondy il its BOD is not the trivial 0 BDEY e
coustruction of a BDD aund us reduction to a canonical forim has woise .
case exponential complexity, whicl may requite nueasonable amonn <
of CPU! time and memory. However, BDDs hiave heen constriucted n
several cases, for functions with over a hamsdied inpirs and a thonsand
gates. implying that satisfiability checking for large functions i« posaibie
via this method,

Anather teehnigue [R] uses test generation algorithins fike those i
Lo enmmerate, in smn-of-products forni, the ON-<ef or the OF Focet 'of
the given logic function. If the sun-of-product forin for the ON-<e1 o
a [unction is null. it means that the function i< not satisfiable. else it <
satisfiable. “This method does not require large anounis of memory. bt
the CI'U time requirements can grow exponentially with the number of
inputs in the problem instance.

3 Channel Routing

3.1 Introduction

The routing problem in integrated circint (1CY Iavout as ta pealize a
specified tnterconnection atuong modnles in as siuall ayy area as possible.
Channel routing involves routing a specilied nethst between two rous
of terminals across a channel,

Channel ronting has been the subject of extensive jesearcly. e goal
of a chanuel router is to ronte a particular channel vsig a phom
tnumber of horizontal tyacks. Sexeral algonthinig have heen proposed fog
twodlayer cliannel tonting (v.g, {’\}. [l‘_’}\ and ote recert s, Jor nagle
tayer chavnel routing (eg. [2]). Uliese algotithins pvrl’m'ln very well
in practice 4 hut are fiearistic and offer limited gnarantess as 1o 10
quality of the final route.

The wiring model nsed 1 chanuel routers assumes that eaclh laver
rins i a particdar direction, e, enther horizontal or sertical. 1o
constramnt is sotnetinnes relaxed (as e (2] awed [9]). in order 10 obiam
better solutions.

3.2 Channel Routing Basics

Given N nets 1o be routed, we have to place these N petcon a minnnmm
number of tracks. There are two distinet tpes of constraints that have
to be accommodated when routing nets. 1 we define the interval of
anet vas i) = (Lo 0] where £, (1) 15 the position of 1he lellnost

?These algotithins aclueye the lemer bound o the requred pumiben ol tracke fiu
problem matanced i mwany «ases




(rightmost ) terminal the net has to be connected to, then it is clear that
nets with intersecting intervals cannot he placed on the sanie row.

A second type of constraint is related to the wiring model used and
deals with colunmn-wise relationships between nets. I a net 7 is con-
nected 10 the top terminal at colommn ¢ and net j is connected 1o the
bottom terininal at the sane columin ¢, then we require net 7 to he
placed abare net 4. in order to make the vertical connections. One can
dertve a Vertical Constrait Graph (VOG) for any given channel, that
represents all vertical constraints between neis.

In the simplest form of routing. each net 1s realized as a unbroken
horizontal segiment. A degree of freedow that can be utilized to ad-
vantage lies in dogleggrng a net. ie. breaking a nel into (two or more)
sub-nets at its ferminal positions. Doglegging can reduce the number
of tracks required 1o make a route.

3.3 Two-Layer Channel Routing Via Boolean Sat-
isfiability

Given a channel. the following procedure coustructs a Boolean function
such that il the function is satisfiable. then it implies that the channel
can be routed in D tracks. A satisfving assigninent for the Boolean
function can be trivially mapped onto a route in D tracks. If the Boolean
function is not satisfiable. it implies thai no route in < D tracks exists
under the chosen wiring model. Szymanski [L1] trausformed the problem
of 3-Satisfiability into one of channel routing in order to prove that
channel ronting was NP-complete. Here, we are interested in the reverse
transformation.

1. Each net i. has P = [ log,(D) ] Boolean variables associated
with it. namely vy, v,2. .. t,p. These variables are bit vectors
that correspond to the track number onto which the net will be
placed. These variables are inputs to the logic function (hat will
be constructed.

2. For each net pair 7. j.if 107} N I{;) # . generate the logic

functions shown below:

Rty + g k2 4+ + e B oyp (1)
where + is the exclusive-or Boolean operator. The above equa-
tions represent the constraints that nets with intersecting intersals
cannot be placed on the same row.

3.0 D < 2P then arbitrarily pick 27— D distinet bit-vectors of
length P. These bit-vectors will correspond to unused rows. We do
ot want any nets on these rows and hence we generate the logic
below. for each net and each unused bit-vector {c; ¢z .. cp).

P (o

e+ + o+ tp B ocp

It should be noted that cy. .. cp are constants with values 0 or 1.

4. Remove redundan edges from the VOG. For instance. if there are
edges between nets jand y. 7 and & and j and k. the edge between
7 and k i< removed. For each edge between net 4 and net j in the
VG, generate the logic corresponding to:

[t B typ) > (. 12 - typ) (3)
For instance. when £ = 2. the logic will he
G-t Ty + 2.T;1.T,2 + .7y (1)

@n

. Constriict a Boolean function F that is the conjunction of Eqns.
1. Eqns. 2 and Equs. 3. with inputs vy, V i, k. Check F lor
satisfability.

A bit-vector corresponds to the row number for each net. We have D
possible bit-vectors that can be assigned to the nets. The logic gener-
ated i the above procedure has a one-to-one correspondence with the
constraints described in Section 3.2,

Theorem 3.1 : 4 ronie nsing < D tmcks erists if and only 1f the
Boolean function constructed by the abore procedure 1s satisfiable.

3.4 Finding An Optimal Route
The procedure described allows us 1o determine whether or not a chan-

wel is routable in [ tracks. To find an optimal route, we repeatediy
apply satisfiability checks as described below.

1. Given a chaunel. we can obtain lower hounds on the number of
tracks required (o route it on the basis of the maxinmng densits
across all columns in the chaunel as wetl the longest path > ju (e
VCG. We first attempt to find a route in a ninbet of tracks equal
to the maximum of these two hounds. nawely [).

2. Try to find a satisfving assignent for the Boolean linction. cos-
responding to ronting the channet e D tracks. A7 the satishiabiliny
clhiecker does ot Llerminate within a specilied anount of Tine, dis
continne the search and go to Step 3. Else, if a satisfving assign-
ment is found, we have lound a route in 1) trachs. Il a satishing
assighinent is not possible, go to Step 3.

3.D =D + 1. GotoStep 2.

If all satisfiability checks terminate. 1.0, are not discontinued. then
the procedure ahove guarantees an optimal ronting. All the net< or a
subset of nets can he doglegged initially. 1o break cycles in the VO'G o
to reduce the fougest patl.

3.5 Ilmproving Satisfiability Check Performance

It is of great importance that the Boolean function produced via thie
logic generation procedure. I he as sinall as possible. The pinnber of
inputs to the Boolean function is N x [ log, (1Y ], where N s the
maiber of nets in the channel and £ is the munber of targeted tracks.
The transformation is efficient in that the nuniber of inputs 1o F only
grows lineacly with the number of nets, The amount of Jogic generated
is dependent on the problem instance. 10 a large number of nets overlap.
we will have a large amount of jogic corresponding to Eqgns. 1.

Since the > operator imphes the # operator. il two overlapping nets
have a directed path bhetween each other in the VOG we do not have
to generate logic corresponding to the Fqns. | for these nets.

In Step 3 of the logic generation procedure of Section 3.3, redun-
dant edges in the VOG are removed. so as to mininnze the amount of
logic generated. If 1hiese redundant edges are not removed, they will
correspond to redundant logic in F.

Fqus. 2 can also he simplilied, if a farge nnmber of nnsed hit-vectors
exist. For instance, il 1111 aud LI are two anused bit-vectors, we
can erge them into 111= and generate logic for onh this hit-vector.
We minimize the set of unused hitvectors using a two-lesel Boolean
minimizer like ESPRESSO {10], s0 a< to rednce the munber of Fons, 2
This has to only be done once for eacl <atisliahility check.

An alternate representation of Fqns. 2 can be used if there are a jarge
nunber of sed codes and/or nets. We pick the 27 = ) hitvecrors
with the largest decimal value. [nstead of generating inequality Jogic.
we generate logic corresponding to the rows of nets being less than a
compacted forin (cubes) of these bit vectors. The advantage of this
represeisiation is thal we caip exploit the transitivity of the < operator,
and generate logic only for the nets at the highest fevel in the NG

Equs. 3 are stored in a compact form for diflerent valnes tor p kg,
4 is the minimum representation for p = 2. MNininnsa representations
for p > 2 are stored as logic macros and instantiated with different inpu
and output variables whenever necessars.

The VOG is jeveled [rom the top to botton as well a< from the bottom
to the top. The level from the top and hotton for eacl net represent
the range of row positions that a net can occups. 114, (1) s the Jevel
from the top (bottom) for net + and there are K rows, then the row
of a net has to lie in the closed intersal [ = 11, — 10 b}, This linuts
the values that the Boolean variables v, of net can take. We find the
row range for each net and set the appropriate variables to concrant
values of 0 or |, decreasimg the number of input vartables oo the Boolean
Junelton Lo be chocked for sahisfiability. For instanee. if £ = S and the
range of a net & is [1, 5] it means that the net has to ie on rowe (00
or 101 and therefore vy = 1 and 12 = 0 (The nmnber of inputs has
effectively been recduced by 2).

These steps are vitally essential to solving large probleins, as is jnd-
cated in Section 5.

3.6 Representing Feasible Solutions

Constructing a Binary Decision Diagram (BDDY} representing (he
Boolean function corresponding to the rontability of a channel i )
tracks. is a means of mupleitly bhut exhaustively searching all possible
feasible solutions to routing the channet in D tracks.

The BDD offers a compact representation of the ON/OFF-sets of a
Boolean function. Eaelt minterm in the ON-set correspoids to distmet
feasible route of the channel in D tracks. However. while the nunher of
minterms in the ON-set can be exponential in the monber of inputs to
the function. the size of the BDD itselfl can he sinall — this is hecanse

YThe longtle of the longest path can e changed via dogleggmg bt wot the
maxinunt density




each intern: corresponds to a path in the BDD from the root to a
leal. In fact, several minterms. forming a cube. can correspond to a
single path. The number of paths may be exiremely large, growing
exponentially with the numnber of edges in the BDD.

If one is targeting a complex cost function. including a relatively sim-
ple minimum-track solution. then one can simply search this compact
representation of the entire space of feasible solutions to select the hest
<olution under the cost function. A example would be tinung-driven
routing. where the length of certain nets needs to be small. Mininnin-
track solutions can he compared against each other to find the one with
the desired property.

3.7 Extensions to Multi-Layer Channel Routing
and Other Wiring Models

The procedure can be extended 1o the muiti-layer routing case, for a
given laver-direction coufiguration. For example. if we liave three lay-
ers. one can perform a VHV route or a HVH route. For simplicity in
description. we will indicate in the sequel how optimal VHV and HVH
routes can be fouud via Boolean satisfiability chiecking. However. the
logic generation procedure can be generalized Lo > 3 layers.

lu the case of VIV routing. there are no vertical constraints between
nets and the horizontal segments can only be on one layer. Therelore.
the logic generation procedure of Section 3.3. is unchanged, except tlhat
Equs. 3 are tiot generated: the VO is ignored.

The HVH case 1= more complicated. The lower hound on HVH routing
i d /2 where d is the maximmu deusity across (he chiannel. We can place
a net on two possible horizontal layers. We add a variable [, to eacl net
i that corresponds to the laver that the net is on. I, = 1 implies that
uet o is layer 1 and {, = 0 implies that net i is on layer 2. Two nets
witl intersecting intervals liave to be on different rows or on different
lavers. We can write

T R R e T I VT S ' Y

in correspondence to Fqus. 1. Fqus. 3 are unchanged for the HVH
case. siice vertical constraints have 1o be obeyed. Unused bit-vectors
also have 10 he handled via FEqus. 2,

H the piteh of the two layers is different, then we choose the track
conut such that we have oy + dy = o horizontal tracks available.
where dy (dy) is the number of tracks on layer 1 (2). The num-
her of variables we require per net (other than the layer variable) is
p o= [log20 M ANy d ) | We will have 2 — oy unused bit-vectors
for layer 1 aud 2" — d; nnused bit-vectors for layer 2.

With four or more layers. we will have vertical constraints between
nets if they are ou the samme layer, but uot if they are on different layers.

A technique which has been used successfully to route channels with
exvelic VOGs 9] s to break exeles in the VCG. route the channel accord-
ing to the acyclic VOG and use a maze router 1o miake the connections
corresponding to the edges that were initially removed from the VOG.
The maze router uses a more flexible wiring model and is efficient for
the small mnnber of connections that can be made. We can use the
techuigne deseribed in this section to perform an optimal route for the
acyelic VOG, rather than the leuristic strategy used in [9].

4 Partitioning and Placement

4.1 Introduction

Several placement problems can be efficiently transformed into Boolean
catisfiability problems and solved exactly. In this section, we describe
transforinations for two-way partitioning. as well as one-dimensional
ated two-dinensional placeient problems.  All these transforinations
lisve the property that the nutnber of inputs to the corresponding
Booleau fuuction grows quasi-linearly with problen size.

4.2 Two-way Partitioning

The problem addressed here is the classical graph partitioning problem.
Given a graph (V. F) with weights on its edges. partition the nodes
of ¢/ into two subgraphs A and B, such that the cumulative weight of
edges across the partition is tmimum. Heuristic algorithms have heen
proposed for 1his problem (e.g. [7]). Here. we are concerned with a
procedure that guarantees the minimuwm solution. In the sequel, we
will deal with uniform two-way partitioning. where 1|4l] = {|B]}. for
simiplicity. However, the procedure can easily be generalized to the the
non-uniforin case.

We can generate a Boolean function such that if and only if the func-
tion 1< satisfiable. will there exist a partition of the nodes, V' € . that
has a cost < (", If one can oblain a lower bound. L. on the cost of
the optimum partition, then we can use the strategy of the previous

section, in progressively increasing the targeted cost. €741l we find a
function that is satishable (1hat corresponds to an optinnin partition).
However. good lower bounds do not exist for the partitionig problem
unlike channel routing. Therefore. we find a good upper hound. 17,
using the heuristic technique of [7] and progressively deercase the 1ar-
geted cost. 7. beginning from Ui till we encounter a logic fanction
that is nof satisfiable. Then. CT 4+ 1 is the cost of the optinunn paiii-
tion. The decrement in 7 is related to problein size: for simall probleros
T js decremented by 1 at each pass. for larger problem instances, a
decrement greater than unity is used.

The logic generation procedure for two-way uniform partitioning is
described below. The procedure recvives the graph and a targeted cost,
CT, as inputs. N is the number of nodes in the grapl.

1. Eachnodei € G . lias P = [log,(.V) ] Boolean variables associated
with it, namely v, v, . r,p. These vanables are bit vectors
whose P-th bit correspond to the partition in which the node will
be placed. There are two distinct partitions corresponding the (/1
values for each of the r,p. These variables are inputs to the logic
function that will be constructed.

2. For each node pair 1. j generate the logic functions shown hetow:
LTRSS I S P BN PR S Y Y] ("

where - is the exclusive-or Boolean operator. Lhe above equations
represent. it a conupact war. the constramt of uniforin partinionmg.
namely. that |4} = {|Bll. We will bave V/2 nodes whose -1l
bit has the value | and N/2 nodes wlhose 2-th it has toe value 0.

LN < 28 then pick 27— N distinet soquential b obit vectons
of length P’. These bit-vectors will correspond 1o unused codes for
the nodes.

YT S T SR LS R T D S O S O U S D (G
As in the routing case. ¢y, .. cp are constants with values 0 or |,

4, For each edge in the graph, we generate logic 10 check f the edge
is a crossing edge or not. If <o the werghit of tie edge 1s added 10
the cost €. We construct the Boolean funetion

IETE

Z wle, ye ey p 2 e T
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where & and { are the nodes connected ta edge ¢, € 1w, s
the weight of edge ¢,. The s operator represents a simple form ol
multiplication. where the secoud operand is a «ingle bit operand.
that can take on the values 0 or 1.

5. Represent the constraint that the cost has 1o he {ess than o equal
to the targeted cost 7.
Cedd [Ny
This is the complement of the > operator deseribed in the puevions
section.

6. Construct a Boolean function 7 that i< the conjunction of Fons
S, Equs. 6 and baus. SOwith inpuis e0 Yoo kL Chieek ] i
satisfiabifity.

Theorem 4.1 t partifion with rost < ¢ T ericts of and ouly of the
Baclcan function coustvacted by the ahore proc dure o5 satisfiable

4.3 One-Dimensional and T:.0-Dimensional Place-
ment

The probleiny of one-dimensional placeiment of gates, <o as 1o mnnnnze
the total net length (or mininuza i of the werghted i of net lenetie
or nummization with constrair ~ on the net fengths) has a very <k
formulation to that above. We have | log,( V) ] vaniables for each
net, corresponding 1o the - osition the net can assume. The cost of a
placeiment is represented Ly the sum of the net lengths. mucl hke 1
Eqn. 7.

In two-dimensional placewest. mider a given aspect ratio. we will
have two sets of variables corresponding to the X and Y conrdinates log
each net. The coat is calculated as a function of both sets of variabies

These probl i< are intrinsicatly more ditlienlt than ronting or part)
tioning prob' s, We feel, at thic stage. that satisfiability chechers liave
to develor (i ther. so as 1o he able to solve large 1wo-dimensional place
ment prodleins. Howeser, Inghly constramed placement problems can
be solveel optimally, even now, since constiaimts preclude the fegality of
a large space of solutions.

By sequential. we mean monototc Ally mereasimg i deciunal valie
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‘Table 1. Statistics of Channels
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Table 2: Optimal Two-Layer Channel Routing

5 Results

In this section. we present preliminary experimental results using the
procedures described in the previous sections. In all cases, the Binary
Decision Diagram [3] method for satisfiability chiecking was used. since
jits performance was superior to the test generation method. for the
kinds of functions that we encountered.

I Table 1. the statistics of the examples used are given. The nunber
of columms (#cols), nets (#nets) and maxinunn density (density ) are in-
dicated for each example. We present optimal two-layer rouling results
in Table 2. Results without doglegging are given under the column NO-
DOGLEG. The optinunn nuimber of fracks (#tra). nnmber of Boolean
catisfialnfity checks (#sat) and the total CPU tie for all the satisfia-
hilits checks (CPU time) are indicated for each example. Medinm-sized
channels are amenable 1o optimmn ronting. But for the smallest exam-
ple. none of the others can be sohved via an exhaustive search method.
The CPU times are all ona VAN LE/RR00. The CP thines for fogic gen-
eration are neghigible in comparison to the satistiability checking times.
and hence are not given.

We present results for 3-layer routing in Table 3. Results for both the
VHY aud BVH wiring models are given. No doglegging was performed
in these experiments. Though the 3-laver routing probien is more com-
plicated. still problems of significant size can he solved exactly.

Finallv. we present results (or two-way partitioning in Table 4. The
mumber of nodes to he partitioned (#nodes), the nuimber of nets con-
necting them (#oets), the cost of the optimumin pattition (cost), the
nuntber of Boolean satisfiabilits chechs (#<at) and the CPU Gime re-
quited (CPU timey Tor all the cliecks are indicated. The heuristic al-
gorithm of {7] was nsed 1o obtain an npper bound on the cost for each
problens and logic functions corresponding 1o gradually decreasing costs
were generated, until a logic function that was nol satisfiable was en-
countered.

6 Conclusions

Iy this paper. we have shown how various problems in layont. namely,
two and nmlti-layer dogleg channel routing. two-way partitioning. one-
ditnensional and two-dimensional placement can be transformed efli-
ciently into Boolean satisfiability problemna and solved optimally using
sophisticated test genceration and logic verification techniques. These
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Table 3: Optiumal Mult)-Laser Channel Routing
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Table 4: Optimal Two-Way Partitioning

transformaltions are ellicient in that the number of inputs in the Boolean
function. we have to findt a satisflying assignment for. only grows linearh
or quasi-linearly with the layout problem size. The number of gates in
the Boolean function is nimnized during the generatiou of fogic. <o as
to speed up =atisfiability check perforinance.

Experimental results indicate that this method of optimal Jayout is
viable for medium-sized probleiis and is much more efficient than ex-
haustive search.

An attractive feature of using this approach is that the entire <pace of
feasible solutions can be represented o a compact way, facilitating the
search for optimal solutions under conplex cost lunctions and associated
constraints,
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